Plotting
This module contains functions for plotting results from Bayesian models.
plotting
Functions:
-
plot_posterior_forest–Creates a forest plot of the Bayesian results with point estimates and
-
plot_posteriors–Creates a summary of the Bayesian results and plots the posterior
plot_posterior_forest
plot_posterior_forest(results: InferenceData, var_names: List[str], titles: List[str], credible_interval: float = 0.95, file_name: Optional[str] = None, **kwargs) -> None
Creates a forest plot of the Bayesian results with point estimates and credible intervals, with variables displayed along the x-axis.
Parameters:
-
(resultsInferenceData) –The results object from the Bayesian model fit, typically an
InferenceDataobject. -
(var_namesList[str]) –A list of variable names to summarize and plot.
-
(titlesList[str]) –A list of titles corresponding to the variables. Each title corresponds to one variable name.
-
(credible_intervalfloat, default:0.95) –The credible interval to use for the error bar. Defaults to
0.95. -
(file_nameOptional[str], default:None) –Optional; The name of the file to save the plot. If
None, the plot is not saved. -
(**kwargsAny, default:{}) –Optional keyword arguments passed to the plotting functions.
Returns:
-
None(None) –This function does not return anything.
Example
plot_forest_bayesian_results(
results_2,
["mu", "tau", "eta"],
["Mean", "Standard Deviation", "Noise"],
file_name="my_model_forest_plot.svg",
)
Source code in stats_utils/bayesian/plotting.py
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 | |
plot_posteriors
plot_posteriors(results: InferenceData, var_names: List[str], titles: List[str], file_name: Optional[str] = None, **kwargs) -> None
Creates a summary of the Bayesian results and plots the posterior distributions with optional keyword arguments for plotting functions. Optionally saves the figure to a file.
Parameters:
-
(resultsInferenceData) –The results object from the Bayesian model fit, typically an Arviz
InferenceDataobject. -
(var_namesList[str]) –A list of variable names to summarize and plot.
-
(titlesList[str]) –A list of titles corresponding to the variables. Each title corresponds to one variable name.
-
(file_nameOptional[str], default:None) –Optional; The name of the file to save the plot. If
None, the plot is not saved. -
(**kwargsAny, default:{}) –Optional keyword arguments passed to Seaborn KDE plot function.
Returns:
-
None(None) –This function does not return anything.
Example
plot_bayesian_results(
results_2,
["mu", "tau", "eta"],
["Mean", "Standard Deviation", "Noise"],
file_name="my_model_posteriors.svg",
linewidth=2.5,
linestyle="--",
)
Source code in stats_utils/bayesian/plotting.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 | |