Skip to content

Plotting

This module contains functions for plotting results from regression models.

plotting

Functions:

  • forest_plot

    Creates a forest plot of the betas with 95% confidence intervals and

  • plot_r2s

    Function to plot the adjusted r2s for each model fit in a sequential

forest_plot

forest_plot(model: RegressionResultsWrapper, alpha: float = 0.05, ax: Axes = None, rename_dict: dict = None, capitalise_vars: bool = True, show_xlabel: bool = True, show_ylabel: bool = True, exclude_param_names: list = None, significance_thresholds: Dict[float, str] = {0.05: '*', 0.01: '**', 0.001: '***'}) -> None

Creates a forest plot of the betas with 95% confidence intervals and significance stars.

Parameters:

  • model

    (RegressionResultsWrapper) –

    A fitted regression model from statsmodels.

  • alpha

    (float, default: 0.05 ) –

    The significance level for the confidence intervals and significance stars. Defaults to 0.05.

  • ax

    (Axes, default: None ) –

    The axes to plot on. If None, a new figure and axes will be created. Defaults to None.

  • rename_dict

    (dict, default: None ) –

    A dictionary of variable names to rename. Defaults to None.

  • capitalise_vars

    (bool, default: True ) –

    Whether to capitalise the variable names. Defaults to True.

  • show_xlabel

    (bool, default: True ) –

    Whether to show the x label. Defaults to True.

  • show_ylabel

    (bool, default: True ) –

    Whether to show the y label. Defaults to True.

  • exclude_param_names

    (list, default: None ) –

    A list of parameter names to exclude from the plot. Defaults to None.

  • significance_thresholds

    (Dict[float, str], default: {0.05: '*', 0.01: '**', 0.001: '***'} ) –

    A dictionary of significance thresholds and the corresponding significance stars. Defaults to {0.05: "*", 0.01: "**", 0.001: "***"}.

Returns:

  • None ( None ) –

    The function does not return any value. It displays the forest plot using Matplotlib.

Examples:

import statsmodels.api as sm
from stats_utils.regression import forest_plot

# Load the data
data = sm.datasets.get_rdataset("mtcars", "datasets").data

# Fit a linear regression model
model = sm.OLS(data["mpg"], sm.add_constant(data["wt"])).fit()

# Create a forest plot
forest_plot(model)
Source code in stats_utils/regression/plotting.py
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
def forest_plot(
    model: RegressionResultsWrapper,
    alpha: float = 0.05,
    ax: plt.Axes = None,
    rename_dict: dict = None,
    capitalise_vars: bool = True,
    show_xlabel: bool = True,
    show_ylabel: bool = True,
    exclude_param_names: list = None,
    significance_thresholds: Dict[float, str] = {
        0.05: "*",
        0.01: "**",
        0.001: "***",
    },
) -> None:
    """
    Creates a forest plot of the betas with 95% confidence intervals and
    significance stars.

    Args:
        model (RegressionResultsWrapper): A fitted regression model from
            statsmodels.
        alpha (float, optional): The significance level for the confidence
            intervals and significance stars. Defaults to `0.05`.
        ax (plt.Axes, optional): The axes to plot on. If `None`, a new figure
            and axes will be created. Defaults to `None`.
        rename_dict (dict, optional): A dictionary of variable names to rename.
            Defaults to `None`.
        capitalise_vars (bool, optional): Whether to capitalise the variable
            names. Defaults to `True`.
        show_xlabel (bool, optional): Whether to show the x label. Defaults
            to `True`.
        show_ylabel (bool, optional): Whether to show the y label. Defaults
            to `True`.
        exclude_param_names (list, optional): A list of parameter names to
            exclude from the plot. Defaults to `None`.
        significance_thresholds (Dict[float, str], optional): A dictionary of
            significance thresholds and the corresponding significance stars.
            Defaults to `{0.05: "*", 0.01: "**", 0.001: "***"}`.

    Returns:
        None: The function does not return any value. It displays the forest
            plot using Matplotlib.

    Examples:
        ```python
        import statsmodels.api as sm
        from stats_utils.regression import forest_plot

        # Load the data
        data = sm.datasets.get_rdataset("mtcars", "datasets").data

        # Fit a linear regression model
        model = sm.OLS(data["mpg"], sm.add_constant(data["wt"])).fit()

        # Create a forest plot
        forest_plot(model)
        ```
    """

    # Get default colours
    default_colors = plt.rcParams["axes.prop_cycle"].by_key()["color"]

    # Get boolean array of which parameters to exclude
    if exclude_param_names is None:
        exclude_param_names = []
    include = np.array(
        [
            param_name not in exclude_param_names
            for param_name in model.params.index[1:]
        ]
    )

    # Get the coefficients and their standard errors
    coefs = model.params[1:][include]
    # conf_intervals = model.conf_int(alpha=alpha)[1:]
    conf_intervals = model.conf_int_bootstrap(alpha=alpha)[1:]
    lower_bounds = conf_intervals[0][include]
    upper_bounds = conf_intervals[1][include]
    p_values = model.pvalues_bootstrap[1:][include]

    # Calculate the errors (distance from the coefficient to the bounds)
    errors_upper = upper_bounds - coefs
    errors_lower = coefs - lower_bounds

    # Number of coefficients
    n_coef = len(coefs)

    # Set up the plot
    if ax is None:
        f, ax = plt.subplots(figsize=(n_coef * 0.4, 1.8))

    # Determine the colour of each point based on the p-value
    colours = [
        default_colors[1] if p_value < alpha else default_colors[0]
        for p_value in p_values
    ]

    # Plot the coefficients
    # Errorbars first
    ax.errorbar(
        x=np.arange(n_coef),
        y=coefs,
        yerr=[errors_lower, errors_upper],
        fmt="none",
        capsize=0,
        capthick=2,
        linewidth=2,
        ecolor=colours,
        zorder=-1,
        alpha=0.8,
    )

    # Then the points
    ax.scatter(
        x=np.arange(n_coef),
        y=coefs,
        s=50,
        marker="o",
        color=colours,
        edgecolors="black",
        linewidths=1,
    )

    # Add significance stars
    for i, (coef, _, p_value) in enumerate(zip(coefs, errors_upper, p_values)):
        if p_value < alpha:
            # Get the significance star string
            star_string = ""
            # Start from the highest threshold
            for threshold in sorted(
                significance_thresholds.keys(), reverse=True
            ):
                # If the p-value is lower than the threshold, add the
                # corresponding significance star
                if p_value < threshold:
                    star_string = significance_thresholds[threshold]
            # Add the star
            ax.text(
                i,
                coef + errors_upper.iloc[i],
                star_string,
                ha="center",
                va="bottom",
                fontsize=14,
                color="#292929",
            )

    # Rename the variables
    if rename_dict is not None:
        var_names = [
            rename_dict[var] if var in rename_dict else var
            for var in coefs.index
        ]
    else:
        var_names = coefs.index

    # Capitalise the variable names
    if capitalise_vars:
        var_names = [var[0].upper() + var[1:] for var in var_names]

    # Set the x-ticks and their labels
    ax.set_xticks(np.arange(n_coef), var_names, rotation=45, ha="right")

    # make axis tick font regular weight
    for tick in ax.xaxis.get_major_ticks():
        tick.label1.set_fontweight("regular")
    for tick in ax.yaxis.get_major_ticks():
        tick.label1.set_fontweight("regular")

    # Add a horizontal line at y=0
    ax.axhline(y=0, linestyle=":", color="gray", linewidth=1)

    # Set the plot's title, xlabel, and ylabel
    if show_xlabel:
        ax.set_xlabel("Variable")
    else:
        ax.set_xlabel("")

    if show_ylabel:
        ax.set_ylabel(r"$\beta$ (+/- SE)")
    else:
        ax.set_ylabel("")

    # Adjust Y-axis limits
    ax.set_ylim(
        min(lower_bounds) - max(errors_lower) * 0.5,
        max(upper_bounds) + max(errors_upper) * 2,
    )

    # Set the x-axis limits
    ax.set_xlim(-0.5, n_coef - 0.5)

    # Remove the top and right spines
    sns.despine()

plot_r2s

plot_r2s(model_output: ModelOutput, save_path: Union[str, None] = None, ax: Axes = None, show_ylabel: bool = True) -> None

Function to plot the adjusted r2s for each model fit in a sequential regression.

Parameters:

  • model_output

    (ModelOutput) –

    Model output from sequential_regression function.

  • save_path

    (Union[str, None], default: None ) –

    Path to save figure to. Defaults to None.

  • ax

    (Axes, default: None ) –

    Axis to plot on. If None, will create a new figure. Defaults to None.

  • show_ylabel

    (bool, default: True ) –

    Whether to show the y label. Defaults to True.

Source code in stats_utils/regression/plotting.py
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
def plot_r2s(
    model_output: ModelOutput,
    save_path: Union[str, None] = None,
    ax: plt.Axes = None,
    show_ylabel: bool = True,
) -> None:
    """
    Function to plot the adjusted r2s for each model fit in a sequential
    regression.

    Args:
        model_output (ModelOutput): Model output from sequential_regression
            function.
        save_path (Union[str, None], optional): Path to save figure to.
            Defaults to `None`.
        ax (plt.Axes, optional): Axis to plot on. If `None`, will create a new
            figure. Defaults to `None`.
        show_ylabel (bool, optional): Whether to show the y label. Defaults
            to `True`.
    """

    cmap_colours = ["#FF00AA", "#B123C4", "#0074FF"]
    cmap = LinearSegmentedColormap.from_list("custom_cmap", cmap_colours)

    if ax is None:
        f, ax = plt.subplots(1, 1, figsize=(2.4, 2.2))

    x = np.arange(model_output.n_solutions + 1)
    y = model_output.r2s

    # interpolate x and y
    x_interp = np.linspace(0, model_output.n_solutions, 100)
    y_interp = np.interp(
        x_interp, np.arange(model_output.n_solutions + 1), model_output.r2s
    )

    # Create a set of points (x, y) as a 2D array
    points = np.array([x_interp, y_interp]).T.reshape(-1, 1, 2)

    # Create a set of segments as a 3D array
    segments = np.concatenate([points[:-1], points[1:]], axis=1)

    # Create a normalized color map for the line gradient
    norm = plt.Normalize(x_interp.min(), x_interp.max())

    # Create a LineCollection with the segments and colors
    lc = LineCollection(segments, colors=cmap(norm(x_interp)), linewidth=3)

    # ax.plot(model_outputs['p_correct'].r2s, 'o-')
    ax.scatter(x, y, c=cmap(norm(x)), s=60)

    # Add the LineCollection to the axis
    ax.add_collection(lc)

    # ax.set_title(p.replace('_', ' '))
    ax.set_title(model_output.y_var.replace("_", " "))
    ax.set_xlabel("Number of factors")

    if show_ylabel:
        ax.set_ylabel(r"Adjusted $R^2$")

    # Add significance stars
    for j in range(1, model_output.n_solutions + 1):
        if model_output.anova_results["Pr(>F)"][j] < 0.05:
            star_string = "*"
            if model_output.anova_results["Pr(>F)"][j] < 0.01:
                star_string = "**"
            if model_output.anova_results["Pr(>F)"][j] < 0.001:
                star_string = "***"
            ypos = ax.get_ylim()[1] * 1
            ax.text(
                j - 0.1,
                ypos,
                star_string,
                fontsize=15,
                fontweight="regular",
                horizontalalignment="center",
                color="#292929",
            )

    # set x tick labels to be integers from 0 to n_solutions
    ax.set_xticks(np.arange(model_output.n_solutions + 1))

    # make axis tick font regular weight
    for tick in ax.xaxis.get_major_ticks():
        tick.label1.set_fontweight("regular")
    for tick in ax.yaxis.get_major_ticks():
        tick.label1.set_fontweight("regular")

    # extend y lim
    ax.set_ylim(
        [
            ax.get_ylim()[0],
            ax.get_ylim()[1] + (ax.get_ylim()[1] - ax.get_ylim()[0]) * 0.3,
        ]
    )

    ax.set_xlim(-0.5, model_output.n_solutions + 0.5)

    plt.tight_layout()

    if save_path is not None:
        plt.savefig(save_path)