Plotting
This module contains functions for plotting results from regression models.
plotting
Functions:
-
forest_plot–Creates a forest plot of the betas with 95% confidence intervals and
-
plot_r2s–Function to plot the adjusted r2s for each model fit in a sequential
forest_plot
forest_plot(model: RegressionResultsWrapper, alpha: float = 0.05, ax: Axes = None, rename_dict: dict = None, capitalise_vars: bool = True, show_xlabel: bool = True, show_ylabel: bool = True, exclude_param_names: list = None, significance_thresholds: Dict[float, str] = {0.05: '*', 0.01: '**', 0.001: '***'}) -> None
Creates a forest plot of the betas with 95% confidence intervals and significance stars.
Parameters:
-
(modelRegressionResultsWrapper) –A fitted regression model from statsmodels.
-
(alphafloat, default:0.05) –The significance level for the confidence intervals and significance stars. Defaults to
0.05. -
(axAxes, default:None) –The axes to plot on. If
None, a new figure and axes will be created. Defaults toNone. -
(rename_dictdict, default:None) –A dictionary of variable names to rename. Defaults to
None. -
(capitalise_varsbool, default:True) –Whether to capitalise the variable names. Defaults to
True. -
(show_xlabelbool, default:True) –Whether to show the x label. Defaults to
True. -
(show_ylabelbool, default:True) –Whether to show the y label. Defaults to
True. -
(exclude_param_nameslist, default:None) –A list of parameter names to exclude from the plot. Defaults to
None. -
(significance_thresholdsDict[float, str], default:{0.05: '*', 0.01: '**', 0.001: '***'}) –A dictionary of significance thresholds and the corresponding significance stars. Defaults to
{0.05: "*", 0.01: "**", 0.001: "***"}.
Returns:
-
None(None) –The function does not return any value. It displays the forest plot using Matplotlib.
Examples:
import statsmodels.api as sm
from stats_utils.regression import forest_plot
# Load the data
data = sm.datasets.get_rdataset("mtcars", "datasets").data
# Fit a linear regression model
model = sm.OLS(data["mpg"], sm.add_constant(data["wt"])).fit()
# Create a forest plot
forest_plot(model)
Source code in stats_utils/regression/plotting.py
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 | |
plot_r2s
plot_r2s(model_output: ModelOutput, save_path: Union[str, None] = None, ax: Axes = None, show_ylabel: bool = True) -> None
Function to plot the adjusted r2s for each model fit in a sequential regression.
Parameters:
-
(model_outputModelOutput) –Model output from sequential_regression function.
-
(save_pathUnion[str, None], default:None) –Path to save figure to. Defaults to
None. -
(axAxes, default:None) –Axis to plot on. If
None, will create a new figure. Defaults toNone. -
(show_ylabelbool, default:True) –Whether to show the y label. Defaults to
True.
Source code in stats_utils/regression/plotting.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 | |